Parameter cascading for panel models with unknown number of unobserved factors: An application to the credit spread puzzle
نویسندگان
چکیده
The iterative least squares method for estimating panel models with unobservable factor structure is extended to cover the case where the number of factors is unknown a priori. The proposed estimation algorithm optimizes a penalized least squares objective function to estimate the factor dimension jointly with the remaining model parameters in an iterative hierarchical order. Monte Carlo experiments show that, in many configurations of the data, such a refinement provides more efficient estimates in terms of MSE than those that could be achieved if the feasible iterative least squares estimator is calculated with an externally selected factor dimension. The method is applied to the problem of the credit spread puzzle to estimate the space of the missing risk factors jointly with the effects of the observed credit and illiquidity risks.
منابع مشابه
Model Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملEuro Corporate Bonds Risk Factors ∗
This paper investigates the determinants of credit spread changes on bonds denominated in Euro. The analysis is carried out using a panel data on Euro bonds. We try to asses the relative importance of market and idiosyncratic factors in explaining the movements in credit spread. Because credit spread changes can be easily viewed as an excess return of corporate bonds over treasury, we adopt a f...
متن کاملDynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملAnalysis of Birth Spacing Using Frailty Models
Background and objectives: Birth spacing is an important variable for identification of fertility acceleration, total fertility rate, and maternal and fetal health. Therefore, special attention has been paid to this issue by researchers in the fields of medical sciences, health, and population. In addition, proper analysis of this concept is of foremost importance. Application of classical anal...
متن کاملCan Structural Models of Default Explain the Credit-Spread Puzzle?
Structural models of default are widely used to analyze corporate bond spreads, but have generally been unable to explain why risk premiums are as high as they are. This credit spread puzzle can be addressed by taking into account such factors as the variability of the level of risk premiums and the likelihood of default over the course of the economic cycle. Models that incorporate such variat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 76 شماره
صفحات -
تاریخ انتشار 2014